

EXPAPER 2018 CNR IM Napoli 21-22 Maggio

Overview modelli di consumo ed emissione e loro evoluzione

Emanuele Negrenti (ENEA), Antonio Parenti (IMPACTS S.r.l.)

	ARIANET – TREFIC	COPERT 5	INEMAR	TEE
1) Caratteristiche generali del modello di emissione	Sviluppato da Arianet in Iinguaggio FORTRAN	Sviluppato da EMISIA in linguaggio SQL	Database sviluppato dalla Regione Lombardia	Sviluppato da ENEA – IMPACTS in linguaggio FORTRAN
2) Dominio spaziale di applicazione del modello	Qualsiasi scala	Scala nazionale, regionale ed urbana,	Qualsiasi scala	Qualsiasi scala
3) Descrizione della flotta veicolare	Su base Copert 5.1 (409 classi)	Su base Copert 5.1 (409 classi)	5 macro classi + trasporto su ferro acqua e aria	150 categorie veicolari
4) Cinematica dei veicoli	Velocità media, algoritmo per congestione	Velocità media	Velocità media	Velocità media , KCF, cicli di guida .

	ARIANET – TREFIC	COPERT 5	INEMA R	TEE
5) Dati per calcolo delle emissioni	Motore freddo, pendenza, manutenzion e età, emiss. evaporative	Motore freddo, pendenza, manutenzione	Motor e freddo	Motore freddo, pendenza, altitudine, età, manutenzione, emiss. evaporative
6) Assessment e Calibrazione del modello	Report on test of CARUSO and TREFIC over Romania.	Implementazione metodologia riportata nell'EMEP/Eea air pollutant emission inventory guidebook. Per i gas serra IPCC guidelines.		Progetti Europei Ishtar, Hearts, Esteem, Heaven. Comune di Roma, Comune di Genova

	ARIANET – TREFIC	COPERT 5	INEMAR	TEE
7) Fonti di dati sperimentali	COPERT 5.1 versione dic 2017			Dati Copert, DVB, INRETS
8) Capacità di integrazione con altri modelli	Modelli di traffico, modelli di dispersione		Modelli di traffico, modelli di dispersione	Modelli di traffico, modelli di dispersione

	ARIANET – TREFIC	COPER T 5	INEMAR	TEE
9) Modelli di traffico per analisi sistema trasporti	Caruso, Visum, Vissim, Aimsun. Compatibile con tutti i modelli di assegnazione		5T Torino	Visum, Vissim, Transcad: in generale tutti i modelli di assegnazione
10) Modelli usati per analisi qualità dell'aria	Gaussiani Plume e Puff, lagrangiani a particelle, fotochimici eureliani.		Farm, Spray, Microspray	ADMS, Aria Impact, Aria Regional.
11) Altri modelli usati per la pianificazione	calcolo delle esternalità di inquinamento veicolare, cambiamento climatico e congestione			Modelli interni(Parcheggio, rumore, incidenti, pedonale)
note aggiuntive	INPUT - OUTPUT in formato GIS (shp file o mif/mid)			

TEE model vs E-revolution (1)

La prevista evoluzione del trasporto su strada suggerisce il potenziamento o la introduzione di specifici modelli del codice TEE:

- 1. Modello life cycle per tener conto dei consumi e delle emissioni provocati dalla costruzione dei veicoli, la produzione dei combustibili e le attività di smaltimento;
- 2. Modello parcheggio ed inserimento e modello ciclo istantaneo di velocità (già presenti) per valutare al meglio i benefici dell'utilizzo di veicoli ibridi ed elettrici;
- 3. Estensione a flotte contenenti veicoli ibridi ed elettrici del modello '
 Kinematics Correction Factor ' realizzato per distinguere le condizioni di
 traffico fluido da quelle di traffico congestionato a parità di velocità
 media;
- 4. Sviluppo ed adattamento del modello di riscaldamento del motore (già presente) al caso dei veicoli ibridi per la quantificazione del tempo di utilizzo del motore elettrico e di quello termico.

Grazie per l'attenzione!

a.parenti@libero.it emanuele.negrenti@enea.it